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Dendritic growth in a mean-field lattice gas model
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We study a stochastic lattice gas model with attractive nearest-neighbor interaction. In a mean-field approxi-
mation, its local master equation can be written as a generalized Cahn-Hilliard equation. Numerical simulations
in two dimensions show the growth of regular snowflakes. Our microscopic equation of motion naturally
shows curvature and kinetic effects at the interface as assumed by the classic phenomenological equations of
dendritic growth. In addition, we find solute trapping. The dendrite tips are stabilized by the Gibbs-Thomson
boundary condition. We calculate the surface tension and show that it has the expected angular variation. Some
numerical results for the kinetic coefficient are given. We compare our model to other microscopic growth
models and the phase-field models, and discuss the influence of [#1€63-651X96)01912-5

PACS numbg(s): 05.70.Ln, 68.70+w, 05.50+q, 68.35.Md

I. INTRODUCTION achieved by some algorithmic prescription, which introduces
a different parametgthe noise-reduction parameter or stick-
Phenomena of dendritic growth have been a challengining probability. There is no precise relation between these
subject for theorists for a long time and are an active field ofparameters and the macroscopic quantities of the continuum
research. The spontaneous pattern formation observed approach. Thus we conclude that there is still a “missing
many systems of different kinds in which growth is limited link” between the microscopic and continuum models.
by diffusion, and the question of morphology selection, at- In this paper we present a model which partially fills in
tract much interest. this gap. We start from a stochastic lattice gas with attractive
The classic models of dendritic growth are continuumnearest-neighbor interaction, and establish its mean-field ki-
mOde|S Wh|Ch State the problem in terms Of partial differen-netic equations by a method recent|y deve'oped by one Of the
tial equationg1,2]. In this picture, the interface is sharp, the 5thors and subsequently applied to the case of an order-
diffusion field is smooth, and a Gibbs-Thomson boundaryyisorder transition [9]. The mean-field approximation
cond|_t|(_3n is specified on the interface. This leads to a _h'ghlychanges the stochastic process into a system of coupled non-
nontrivial free boundary problem. Parameters for this aPlinear differential equations(dynamical systein without

proach are macroscopic quantities like surface tension, Caliise. Our model exhibits two-phase coexistence below a

ilary Iength, and d|_ffu5|on constants. These m_odgls a9re&ritical temperature and a first-order phase transition. Its stat-
very well with experiments, and continue to furnish interest-.

ing results[3]. We want to show in this paper that macro- ics are completely equivalent to those of the usual Ising

scopic equations can be derived from a microscopic modéFOdel’ but, in contrast to the widely studied Kawasaki ex-

using the methods of out-of-equilibrium statistical mechan-change dynamic§10], in our model the dynamics are not

ics. invariant under a global spin-flip. We show that our equa-

Various microscopic discrete growth models have beertions of motion are a discrete version of a generalized Model
investigated. Usually, random walkers are used to approxiB dynamics in the classification of Hohenberg and Halperin
mate the diffusion equation. The most studied model id11], or, in other words, that they constitute a generalized
diffusion-limited aggregatio(DLA ), invented by Witten and Cahn-Hilliard equatior{12] with a mobility coefficient de-
Sander4]. It would be desirable to obtain the macroscopicpending on the shape of the local concentration profile.
description by some kind of continuum limit of the micro-  Our model has some common features with the phase-
scopic dynamics. However, the problem of noise is nonfield models introduced in recent yedds3—16. They work
trivial in this passagg5]: the approximation of the diffusion with a diffusion field coupled to a phase field describing the
equation by random walkers is valid only if a large numberlocal thermodynamic state via a Ginzburg-Landau order pa-
of walks are averaged, whereas, in classical DLA, each parameter. The interface is extended in space, and the boundary
ticle reaching the aggregate sticks immediately. This procondition is a “built-in” feature of the local thermodynam-
duces well-known irregular shapes. To model dendrites, onis. In the present study, we consider the isothermal growth
must obtain smooth shapes. Progress in this direction hasf alloy dendrites from a supersaturated solid solution, so
been made, for example by the introduction of noise-reducethat we work with only one field, the concentration. Our
DLA [6], or by models which incorporate curvature effectsequation of motion incorporates diffusion and aggregation
[7,8]. In all these cases, however, the desired effect imaturally which avoids the introduction of an often arbitrary

coupling term. In addition, we have the picture of an under-

lying microscopic process, absent in standard phase-field
*Electronic address: Mathis.Plapp@Polytechnique.fr models. On the other hand, this connection to microscopic
"Electronic address: Jean-Francois.Gouyet@Polytechnique.fr  dynamics makes our model less flexible: if we want to
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change a macroscopic parameter, we must modify the micradiffusion of the two species. However normally in this case
scopic interactions. the phase diagram is more complicated than our simple bi-
Lattice gas models are widely used tools to model phaseary mixture. There is only one parameter in our theory, the
transitions and nonequilibrium phenomena. So it comes asoupling k=¢/kT between nearest neighbors. All macro-
no surprise that our model reproduces many of the characcopic quantities like surface tension, anisotropy, and capil-
teristic features of first-order phase transitions: after a quenclary length are functions ok. Evidently, to compare our
in the unstable region of the phase diagram, we observmodel to real alloys, it would be necessary to include more
phase separation, whereas in the metastable region we hawgeractions so as to have the corresponding phase diagram
to put in a supercritical nucleus of one phadenoted byw) and to reproduce measurable macroscopic quantities like sur-
in a supersaturated bath of the other ph@snoted byB).  face tension correctly. But this presents no conceptual diffi-
This “germ” then grows by diffusion of material from the culties: the lattice gas model is flexible enough to include
surroundings. It is precisely in this situation that we observeother interactions. Here we treat a two-dimensional square
the characteristic Mullins-Sekerka instabilifit7] and the lattice, but the model can be adapted to three dimensions and
emergence of nice “needle crystals.” From the continuumother lattice types without too many difficulties.
theory it is known that the factors which control the shape The remainder of this paper is organized as follows: in
selection of needle crystals are the anisotropy of the surfac8ec. Il, we present our model and derive its equation of
tension and attachment kinetics which induce a shift in locamotion. In Sec. 1ll, we show some numerical simulations. In
equilibrium when the interface moves. In our case, these efSec. IV, we calculate the surface tension, which in Sec. V
fects are resumedo linear ordey in a boundary condition at serves to determine the capillary length. Section VI discusses

the interface of the form the anisotropy of the diffusion coefficient, whereas Sec. VII
deals with the dynamics of planar interfaces. Section VIl
pP— p{jq contains a summary and an overview of further perspectives.
Ap =d()K+ Bo(0)v. (1)
Il. MODEL

Here p” is the occupation probabilityequivalent to a con-
centration immediately ahead of the advancing fropffq its
bulk equilibrium value Ap the equilibrium miscibility gap,
d(6) the orientation-dependent capillary lengk,the total
curvature(K=1/R in two dimensiony v the interface nor-
mal velocity, andB,(6) an orientation-dependent kinetic co-

Consider a square lattice & sites in two dimensions
(coordination numberz=4). Let n; denote the occupation
number of sitei: n;=1 if a particle is present, and 0 other-
wise. There can be at most one patrticle at a site. In addition,
we assume an attractive nearest-neighbor interaction, which
leads to the Hamiltonian

efficient.

Our goal is to derive the coefficientg §) and By(6) from N
the microscopic interactions. The Gibbs-Thomson boundary H= _82 nn-—uoE n )
condition can be derived from the statics, and we directly in ! =R

calculate surface tension and capillary length. A key role is

played by the interface thickness, which is related to thevheree is the interaction energfattractive:e>0), ug is an
correlation length, a physically accessible quantity. We findexternal chemical potential, and the first sum goes over all
that the anisotropy of surface tension is mainly due to anearest-neighbor pairs. Clearly, this is completely equivalent
variation of this length with orientation, a phenomenonto the Ising model. It is also only another form of the Hamil-
which has already been observed in some phase-field modeisnian of a binary alloy: if we have two species of atofAs
[14]. and B) with nearest-neighbor exchange energigs, eag.,

To derive the kinetic terms, we have to analyze the dy-andegg, respectively, it is easy to verify20] that by putting
namics of a planar interface. We can determine the kinetie =eaptegg—2eag, and redefining the corresponding
constant numerically. In addition, we find a modification of chemical potentials, we can recover the Hamilton(2n So
the flux-velocity boundary condition due to solute trapping,“particle” and “hole” can stand as well for ‘A” and “ B”
that is a deviation of the concentration of the growing phasetoms, and the model can describe processes in alloys as well
from its equilibrium value. This effect is usually not included as the “condensation” processes more closely suggested by
in the classic formulations of the dendrite problem, probablythe lattice gas terminology.
because for the velocities encountered in dendritic growth it To define the dynamics, we assume that particles can
is small. However, for larger velocities, solute trapping is anmove only via nearest-neighbor hops. In the alloy picture,
experimentally well-documented phenomenon, and theoretithis corresponds to a simple exchange of atoms. We thus
treatments by continuum equatioid8] and phase-field neglect vacancy or interstitial diffusion. We consider our
models[15] are available. To our knowledge this is the first system to be in contact with a heat bath: temperature is con-
time that all these phenomena are directly derived from &tant, and energy is not conserved. Particles can be intro-
microscopic model in the context of dendritic growth. duced or taken out only at the boundaries.

It is clear that with an oversimplified model like ours we  We will rapidly recall that the derivation of a kinetic
cannot make a direct comparison with experiments. Giverequation for this model that was previously published in
that our model is isothermal, and that there is no latent heanore detail by one of the authof8]. We are interested in
associated with its phase transition, it could be most closelgquations of motion for the mean occupation number
related to alloy dendrite 9], where heat diffusion can often p;={(n;). The meaning of the average has to be defined, and
be neglected and the growth is limited by the chemical interthere are essentially two possibilities. We can think of a tem-
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poral average, where we averageover a time intervalr  which constitute the equations of motiBOM) for our sys-
which is much larger than the inverse jump frequency, butem. Clearly, a mean-field approximation is rather drastic,
much smaller than the characteristic time scale of macroespecially in two dimensions. But, as usual, we hope to ob-
scopic evolutiontemporal coarse grainingThe second pos- tain a qualitative understanding by this simple treatment. A
sibility is spatial coarse graining in the spirit of real-spacepossible improvement would be to use the path-probability
renormalization, which leads to the usual coarse-grained fremethod devised by Sato and Kikucf21] or a dynamic
energy functionals. We will adopt the first point of view to density-functional approack22], but the formulas are con-
keep the meaning of as a direct interatomic interaction siderably more complicated. A study of these issues will be
(spatial renormalization would lead to an effective interac-the subject of a forthcoming work.
tion). We can cast these equations in a form more closely con-
We now want to write a local master equation. The num-nected to out-of-equilibrium thermodynamics. Let us rewrite
ber of particles being a globally and locally conserved quanthe expression for the current in the form
tity, the “concentration”p; obeys a continuity equation

Jik=—Sik(Ck—Cy), )
1%
G P —EK Jik (3 where[we consider the case=0 of Egs.(10) in Ref.[9]]
1
where the sum goes over the nearest neighbois afid the S‘k:c_ (1—p)(1—py) 8
0

current in the linkik is defined by

jie=(Mi(1—n)wi({nH) — (1 —n)w({n}). (@) is a term symmetric in the two sites, and

The factorsn;(1—n,) take care of the exclusion principle: Ci=co Pi exp{ -k, pi+a) 9

the start site must be full, the arrival site emp#y, ({n}) are 1-p a

transition probabilities depending on the local configuration. _ .

The physica' picture behind our model is that the |attice!s a |Oca| term. ThIS term can be thought Of as a |0ca| activ-

points are located at the equilibrium positions of atoms in dty.

crystal structure. Then an atom is trapped at its site in a

potential well whose depth depends on the local configura-

tion. If the thermal energy 1s small compared to the bamerand,ui is a local chemical potential. Then we can rewrite the

heights, the jump probabilities follow an Arrhenius law. We i . X

assume the barrier height to be the energy necessary to taﬁguat!on for the current in the form of generalized transport
N . oo 2 T “gduations:

away an atom from its site, that is, the sum of its binding

energies. This leads to

Ci:eXFl(,(Li/kT), (10)

Jik=—Mix(pe— ), (11a

wi ({n}) =wgex Ij_'l'g ni+a). (5 jik=—Dik(Pk—pi), (11b

with a generalized mobility
W, is an isolated particle jump frequency which sets the

overall time scale, and will be taken to be unity for conve- C—C;

nience. Here and in the following, will denote a lattice unit Mik=Sik L— i (12)
vector, and summation ovex means summation over all !

nearest neighbors. We remark that this expression differand a generalized diffusion coefficient

from the usual Monte Carlo rule, where the transition rate is

proportional to exp—AH/2kT) with AH being the energy C—C;

difference between initial and final states. In our model, the Dik=Si P—pi (13

transition rate depends only on the initial state. At this point

the asymmetry between particles and holes enters into thgoth of these generalized transport coefficients include a de-
dynamics, because an atom surrounded by attractive neighendence on concentration as well as gradient and curvature
bors will stay in its place much longer than a hole sur-terms. The connection with well-known field-theoretic mod-

rounded by other holes. _ o ~ els[11] can be established by setting
Finally, we make a mean-field approximation; that is, in
all the above expressions we replace the occupation numbers IF({p})
n; by their mean valueg, . Defining the couplingc=¢/kT Mi= : (14)

(')l .
and putting all the pieces together, we hdwg=1): Pi

ap F({p}) being a lattice version of a free energy functional.

i _ _ We can choose the arbitrary constaogdn Egs.(8) and(9)

= (1 ex i

at ; [p'( P % K% p'“") and o in the Hamiltonian(2) in order to make the free
energy symmetric and the chemical potential antisymmetric

—pu(1—p)exd — ’ 6 with respect to the interchangp;—1—p; (particle-hole
P10 ’{ K% pk*b)} © symmetry. Then we find the following expressions:
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M, always being positive, the free energy can only decrease,
and the stationary states satisfiy=const, as expected for
equilibrium states.

Now we are ready to establish therell-known) phase
diagram: we are looking for the minima of the free energy,
considering only homogeneous states. g&=p and the
equilibrium concentrations are given by the solutions of the
equation

0.2 0.4 0.6 0.8 1 1 Pk
f w=—s> (pk+a_pk)—28(pk—— +KT In —
a 2 1-py
-0.01 (18
0.02 In the first term we recognize a discrete Laplacian: this
chemical potential takes into account local curvature of the
-0.03 concentration profile, a natural extension as already noticed
by Cahn[23].
-0.04 | | | We remark that the EONEQq. (6)] indeed describe a sys-
: : tem approaching equilibrium: when we calculate the total
-0.05 | | | time derivative of the free enerdy, we find
| |
' ' dF
: : a:_%z M k= ai)?. (19
I | ik
| |
| |
| |
| |

JF(p)
p

! +KkT I P =0. (20
- = anp— . ( )

m(p)=

=—1Ze

=35

Below the critical temperature there are two stable solutions,

_ Peq and pgq. Here and in the followinge will denote the
FIG. 1. Local free energy as a function of for a temperature dense(“liquid”, “ A rich”) phase andg the dilute (“gas-
T<T, and the mean-field phase diagram of a simple binary mix'eous”, “B rich”) phase. The classical spinodal is given by
ture: the two equilibrium concentrationeg, and pgq correspond to the solutions of

the minima off. The regions in light grey are unstable; the dark

grey corresponds to metastable states. u(p) KT

—__Z +—
p T p(1-p)

in our case a parabola. The corresponding phase diagram
(Fig. 1 is typical of a binary mixture(liquid or alloy):
with a local potential the order parameter is the miscibility gapp(T)
=ped T)— p q(T) The transition is first order except at the
76 point p=3, which corresponds to zero magnetic field in the
—— " (p. —1)2 _ _ Ising model. Let us remark that this is exactly the mean-field
i 2 (P 2) "+ KTLPNPict (1= P In(1=p) ] phase diagram of the Ising model. So the statics are com-
(16)  pletely symmetric with respect to the interchange of particles
and holes. But the dynamics are not. If in expressit®
Here z is the coordination number of the lattice. This is aand (13) for mobility and diffusion constants we take the
discrete analog of a continuous functional of the Ginzburgdimit of homogeneous systems, we find
Landau type, withe playing the role of a gradient energy,

=0, (21
FPH=2 [ fit 3 = (Pra—PO?|, (19

p(1-p) —p)
. Mpom(P) = — = exp(— kzp) (22)
=f (f(p)+7(Vp)2 dv. 17
for the mobility and
Below the critical temperatur&T.=2ze/4, and f, has a DhonlP)=(1—kzp(1l—p))exp — kzp) (23

double-well structure with two minima distributed symmetri-

cally around;. NearkT,, it can be closely approximated by for the diffusion coefficient. We see that the exponential

a quartic potential. For lower temperatures, higher ordeterm destroys the symmetry: dynamics is slower in the dense

terms become more important. The two potential wells bephase. The temperature can be used to “tune” the ratio be-

come very sharp and are located very close to O afieid. ~ tween the diffusion constants in the two bulk phases: we

1). have, in view of the symmetry of the two equilibrium con-
The chemical potential becomes centrations,
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FIG. 3. Stroboscopic plot of a growing droplet on a 2@D0

. . lattice, starting from a circular initial stateadiusR=10), showing
FIG. 2. Fourfold “snowflake” grown on a 200200 square the Mullins-Sekerka instabilityT=0.5 T, and p..=0.1.

lattice at T=0.1T., and a fixed concentration on a large circle

P..=0.02.
finger shapes. We checked that the overall shape of the ag-
D @ gregate is independent of the boundary conditions. To ob-
hom(peq) L . .
D—B:exp(—;czAp), (24)  serve the initial stages of the branch formation in greater
hor{ Peg) detail, in Fig. 3 we show a stroboscopic plot of a growing

where the miscibility gap\p is a function of temperature. circular germ a}t higher .temperature. The aggregatg develops

The widely used symmetric model, where this ratio is takersMall bulges in the diagonals of the Iattlce_w_h|ch grow

to unity, is approached only in the limft—T,. gradually to_ form fully dgvelop_e_d branches. This is the well-
known Mullins-Sekerka instability17].

What interests us here is the mechanism which favors
growth in the lattice diagonals, and stabilizes the tip of the
We studied the behavior of our model by numerical Simu_growing needles. Fro.m. macroscopig theories it is known th_at
lations. To this end, we must integrate the equations of mog Necessary prerequisite for the eX|ster_1ce of ;table growing
tion. We used a simple Euler finite difference algorithm. Ast[Ips is an anisotropy of the surface tension. This effect exists

usual in such algorithms, the speed of the calculation is limin Our model, but there might be other effects due to the

ited by a numerical instability which occurs when the lattice: the diffusion coefficient, which “lives” on the lattice

timestep becomes too large. The limit on the timestep can bBONdS, might be anisotropic, and the attachment kinetics
calculated by a linear stability analysis. We performed simu£ould play an important role. To solve this puzzle, we will
lations with timesteps near this limit, and control runs with treat each of those effects separately in the following sec-
smaller timesteps gave the same results. All simulations prdions. We remark that the favored growth directions are
sented in this section are performed on a standard workst&table: when we start growth with an initial condition pre-
tion, and each took several hours CPU time. The biggestenting tips in the lattice directions, these tips become un-
lattices we used are 2600 points. stable and split to form two new tips in the diagonals. This is
To observe diffusion-limited growth, we chose as initial depicted in Fig. 4.
condition some “seed” of thex phase surrounded by a  The simulations of Figs. 2 and 3 have the same lattice
“bath” of supersaturated3 phase: the concentratiqgm, at  size. Hence we see that there is a global scaling with tem-
the exterior of the droplet must be bigger tha)éﬁ1 to have a  perature. This is due to the fact that the intrinsic length scale
nonzero thermodynamic driving force, and smaller than thef our model is the characteristic interface widthwhich is
concentration on the spinodal to avoid nucleation. In thisshown below to diverge whem approached .. However,
situation a concentration gradient develops and drives a difgiven the dependence of the dynamics on temperature as
fusive flux toward the interface. It is easy to see that forexpressed in Eq(24), we expect this not to be a simple
small gradients the EONB) reduce to a diffusion equation. renormalization of lengths.
For low temperatures, we observe the formation of four- Itis clear that for a temperature 8=0.1T, as in Fig. 2,
spoked snowflakes as depicted in Fig. 2. To speed up growtlhis characteristic length is much smaller than the lattice con-
we held the concentration constant and equaptoat the  stant, which means that the mean-field approximation is the
exterior of a circle. We emphasize that this does corre-  least doubtful. Our analytical developments presented below
spond to free dendritic growth in supersaturated solutionsare strictly valid only at high temperatures=0.7T ). How-
but for the moment we are interested only in the qualitativeever, our numerical results indicate that there is no qualita-
features of the branching instability, and not in the detailedive change. To have simulations corresponding to well con-

Ill. SIMULATIONS
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FIG. 4. Same as Fig. 3, but starting from a seed presenting tips
in the lattice directions, which are unstable growth directions.

trolled analytics, we would have to increase the system size FIG. 5. Same as Fig. 2, but a conservative Langevin noise term
and temperature, which means larger CPU times. This is culis added to the equations of motion: sidebranches appear.
rently being done.

Another important issue is noise. Real dendrites are nogxpressions for the various effects. These will be checked
needle crystals, but present sidebranches. To observe sidggainst numerical calculations.
branching in our model, we have to add noise. We can do
this either by adding a conservative noise term to the equa- IV. SURFACE TENSION
tions of motion or by adding a quenched noise: at each site,
we assign a rand0m|y chosen local energy. In both cases, It should be clear from the beginning that all effects of
sidebranches develop. Figure 5 shows a picture generatédiisotropy are due to the lattice, and hence invisible in a
with the former method. The fact that sidebranching activitycontinuum treatment of the problem. For the sake of com-
is connected to noise is known, but a quantitative descriptioarison, let us nevertheless recall very briefly the continuum
is still lacking. definitions.

Even for the deterministic evolution, a noisy initial con- ~ Consider a planar interface whose normal coordinate is
dition may lead to chaotic behavior when the average ConAt equilibrium, the chemical potential is constant throughout
centration gradient is not parallel to one of the growth directhe system, and for planar interfaces it is zero by symmetry.
tions. Figure 6 shows a simulation in cylindrical geometry!f the concentration varies slowly on the scale of the lattice
(periodic boundary conditions in thedirection, where we ~ spacinga, Eq. (18) can be approximated by
placed a “substrate” at the bottom which consists of one )
layer of solid and one layer of “rough” surface, where the —ea? I°p(x)
concentrations were chosen at random between 0 and 1. At ax®
the top, the concentration was fixed. We see that the initial
noise is sufficient to destabilize the planar surface: dendriteMultiplying both sides withdp/dx and integrating once
with sidebranches occur. gives

The characteristic width of the developing structures de-
pends both on temperature and incoming flux. It is known
from dendritic growth theory that the tip radid® of the
selected dendrites is roughly the geometric mean of the cap-
illary lengthd, and the diffusion lengtld/v, wherev is the  a relation which, in the language of the well-known me-

+1'(p(x))=0. (26)

p

2
5) =1(p)~f(Peg). @7

eaz

NI=

tip velocity: chanical analog, expresses the equipartition of kinetic and
potential energies. The surface tension is defined as the ex-
cess free ener er unit surface,
R~ \/doD/v. (25) 9P
_ Fint_ I:hom (28)
Given that the former is proportional to the correlation length 7 S '

¢, whereas the latter is inversely proportional to the velocity,

the structures should sharpen when the temperature goesereF;, andF,,,, are the free energies of the equilibrium

down or the flux goes up, which is indeed what we observestates with and without an interface, respectively. Using the
We will now analyze more in detail the different factors free energy functionall7) and the relatior{27), we have, in

contributing to the anisotropy, and if possible give analytictwo dimensions,
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FIG. 6. Growth from a rough interface on a 28680 lattice. Concentration in the second “substrate” layer varies randomly between 0
and 1; no other noise is added. The concentration far from the substrate is fixed to 0.02 @sid ..

= [ dpo(X) |2 Now we are ready to make comparisons to our discrete sys-
UZSJW o) 9% (29  tem. The exact equilibrium states can be found numerically
by solving the set of equations,=0, subject to the appro-

wherepy(x) is the solution of the differential equatid@é) p_riate b.oun(_jary conditions which en_forcg an interface in a
subject to the appropriate boundary conditions; that is, th@iven direction. For the symmetry directios0) and (11)
solution which connects the two equilibrium concentrations this is fairly simple, because the problem reduces to an array
For a quartic potential, the exact solutipg(x) is a hy-  of equations for points on a line, which can be indexed by an
perbolic tangent; for nearly all double-well potentials, theinteger. Therefore, we can use E#8) for an iterative solu-
tanh is a good approximatiofSmal) corrections can be tion. To do this, we can start out, for example, at the sym-
easily calculatedsee below. We can determine the charac- metric pointp,=3. Then we have to picl, and iterate Eq.
teristic thicknes<t of the interface by a well-known method (18). p; has to be chosen in order to satisfy the boundary
(see, for example, Ref24]). Far from the interface, the con- condition P—Peq for k—o. By a simple “shoot and test”
centration approaches the equilibrium vajug (in view of  algorithm we can obtain great precision very rapidly. Equa-
the symmetry of the two phases, here we will drop the sution (18) is the discrete analog of a differential equation, so it
perscriptsa: and ). Writing u(x) = p(X) —Peq and lineariz- i not surprising that only the boundary condition can select
ing (26) in u yields a solution. Another quite rapid method to obtain exact inter-
face shapes is simply to use the equations of motion and let

—sa'U" () +u (Peq)u(x) =0 (30 the system relax to the equilibrium state.
The solution is an exponentiali~exp(x/¢;), where the in- Once the equilibrium_ state is known, we can use the basic
terface width is given by definition (28) and our discrete free energy functioriab) to

determine the surface tension. We find that for the square
§o=a*/8Xeq (31) lattice at all temperatures the surface tension in the lattice

diagonals,o;, is slightly higher than along the lattice axes,
Here, we have defined the susceptibilityp) by o10. In addition, the surface tension depends on the position

2 (p) of the interface with respect to the lattice. If we define the

“w

' (32) position of the interface by the symmetric pot3, o is
extremal when the interface is exactly on a lattice point
) o (*odd number of sites’] and in the middle between two
and xeq=x(Peg- This characteristic length depends on tem-jints (“even number of sites). This is a consequence of
perature and diverges with powgasT approaches the criti-  the discrete structure of our model. It is known that in some
cal temperature, as expected for a mean-field correlatiogjy,ations as e.g., in epitaxial growth, physical quantities

x(p)~t 7p

length. _ S vary with the coverage, that is, with the average occupation
Let us, then, approximate the equilibrium interface to zeqyymper of a given crystal plane. However, it seems difficult
roth order by to establish a direct relation to such phenomena by our
A mean-field treatment. We remark, however, that our model
Po(X) =3+ _ptam—(i> (33 Igads to physically reaspnable b_ehayior. First_, these varia-

2 28 tions are much weaker in th@1) direction than in thg10)

. o o direction. Arguing in terms of the stochastic process, this can
(Ap is the miscibility gap. Calculating integral(29), the  pe ynderstood from the fact that an atom arriving ol

continuous surface tension is given by surface has two connected links, independent of the cover-
Ap)2 age, whereas on @0) surface this number varies between 1
UCZS( P) (34) (nearly empty surfageand 3(nearly filled surface Second,

65 consider a vicinal surface, that is, an interface making a
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small angle with a singular direction. The interface will tend 0.2

to attach to its configuration of lowest surface tension, which Oy,

will cause the formation of well-localized steps if the inter-

face is not too thick. This is the case in our model for tem- 0.15 ]
peratures below~0.7T. For higher temperatures, the ef-

fect decays rapidly: forT=0.8T., the amplitude of the 01 N

variations ofo with position is only about 1% of the ampli-
tude of angular variations, and it decays much more rapidly
when we approach the critical temperature. This allows us to 0.05
neglect it in the high-temperature domain, corresponding to

rough interfaces. O

We make the approximation that the profile of the inter- 0

face is invariant under translation parallel to the surface; that 075 08 085 09 095 !
is, the concentration at a given lattice point depends only on o 0
the projection of its coordinate vector onto the normal. Con- $ £ 500000000
sider a planar interface whose nornmimakes an anglé -001F
with a lattice axis. We will denote by the projection of the

I
-

6666666660®0000wwww

coordinate om. A first consequence of the lattice structure is - 002 _
that the thicknesg becomes dependent ah This can be —0.03F 3
seen as follows. Instead of E@6), we now have to linearize . ]
the discrete equatiofl8). Writing py=peqtUx, and explic- - 0.04F .
iting the discrete Laplacian, we find. E 3
- 0.05F -

—&(u(x+a cos) +u(x—a cosh) +u(x-+a sing) Y AT
+u(x—a sinﬁ)—4u(x))+,u’(peo)u(x):O. (35) 07 075 08 0385 09 095 1

kT
We see that this equation is solved b{x)=exp(x/&(0)),
provided that FIG. 7. Surface tension in the lattice directions and anisotropy
) as a function of temperature. Circles are numerical results, lines the
a sing a coy the first-order approximatio(88). Using the improved metho@0),
cosh ———| +cos —2= .
£(0) £(0) 28Xeq

we obtain a perfect agreement.
From this equation, we can determig&d). For high tem-
peratures wheré is not too small, we can expand §and
obtain, to leading order i,

(36)

anisotropy is an important control parameter in the dendrite
problem, and hence we will make some effort to obtain bet-
ter results.

There are two reasons for the difference between(8g).
and the numerical results. The first is the use of the con-
00549), (37 tinuum relation(29). The passage from Eq$26) to (27)

makes use of the chain rule, which is valid for the continuum
. ) . case but not for finite differences. This means in particular
whereg, is given by Eq.(31). There is a general correction ¢ the equipartition of the energy is no longer valid. Indeed,
to the continuum result due to the finite lattice step, plus ans e try to improve our result by using simply the discreti-
explicit anisotrppy, which displays the fourfold symmetry of ;ation of Eq.(29), we find that the anisotropy changes sign.
the square lattice. As expected, for-Te, the details of the g4 there is an important contribution from the potential en-

lattice structure are ;uppress@ﬁe susceptibility'diverge)s ergy, and we have to use the complete definiti@s) to
we recover the continuum result, and the anisotropy vang,ajuateo-

ishes. _ _ The second reason is the use of the an$a8. It is a
If we use this result together with the anse83) and the 4444 approximation of the equilibrium solution far from the
continuum formula34) to calculate a first order approxima- jnterface, but not around the origin, which makes the most
tion to the surface tension, we find important contribution to the surface tension. When we com-
pare the exact profiles with Eq433) using the appropriate
(39) discreteé(6), we indeed find that the differences are localized
around the origin. Moreover, we find that in tE0) direc-
tion the interface is steeper than predicted(8$), whereas
Comparing this result to the exact values f8=0 and in the (11) direction it is flatter.
0=ml4, we find that the values af are well reproduced for To account for the second effect, we must improve our
high temperatures. On the contrary, the anisotropyansatz by adding a correctigrix). This correction should be
(o9~ 010/ (09t 079 IS largely overestimated even for high antisymmetric, and decay to O faster than(@x§) in order to
temperature$Fig. 7). The reason is that the anisotropy con- leave the limit values and the linear order terms as fixed by
tains the difference of two surface tensions, which is a seckq. (35). If we expand the potential in EG18) in powers of
ond order term and needs more precise calculations. Thg—3), we see that powers of the initial tanh function can be

1
1+ ——"+—
32<9Xeq 968Xeq

£(0)=¢&o

1 1
328 Xeq 96€Xeq

og(0)=0¢| 1 cos4 |.
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FIG. 8. Plot of the coefficiertb(6) of the shape correction to the
hyperbolic tangent profile given by E(B9), for T=0.86T.

2%107°
candidates for an improved solution, for then we can solve
order by order. To satisfy the other conditions @fx), we
chooseg(x) =bd?/dx?tanh(x/2¢), which leads to the follow- 1% 107
ing ansatz:
_ _1. {Ap_b X 10 20 30 40
P(X)=Po(X)+g(X)=5+| 5= 222/ 5z 0 (degrees)
+ iz tant? X . (39 FIG. 9. Surface tension as a function of orientation for
2¢ 2§ T=0.86T,. Below: difference of the upper curve and the pure co-

. sine given by Eq(40): the next harmonic, c486), appears.
Hereby, we introduce another degree of freedom, the param-

eterb(#), which has to be fixed. To achieve this, we use the he tri lar lattice—6). H find
complete equationil8), taken at a poink, not far from the = YPeS: €.g., the triangular lattice=6). Here we find a
origin, which we solve numerically fdv. The result depends weaker S'Xfo_ld amsotropy,_thls t_|me_W|th th_e maxima of the
on the choice ofxy: here we recover the variation of the surface tension in the lattice directions. Simulations analo-

surface tension with the interface position. As discusse@©US t0 Fig. 2 indeed show six-spoked snowflakes with their

above, for high temperatures this effect is negligible. An ex-2rMs pointing in the lattice directions.

ample of a plot ofb(6) is shown in Fig. 8. We see thét
changes sign between the symmetry directions, giving good
agreement with the numerical calculations.

Then we can calculate(6) using the discrete formulas
(15) and(28). The results in the high-temperature region are  Curved interfaces modify the local equilibrium concentra-
very good: they agree up to the fifth decimal with the numer+tions. Contrary to the planar case, there is symmetry break-
ics. This method is easy to handle, because it needs only theg between droplet and exterior, which leads to a nonzero
numerical solution of one equation instead of the optimiza-chemical potential. When the radii of the curvature are much
tion procedure necessary to obtain the exact interface shaparger than the lattice constant, we can use a continuum ap-

Figure 9 shows a plot af(6). We see that it can be very proximation. For isotropic surface tension, it is straightfor-
well approximated by a fit of the form ward to show 24] that the first order correction to concen-

trations in and out of a droplet is

V. GIBBS-THOMSON BOUNDARY CONDITION
AND CAPILLARY LENGTH

o(0)=o0y(1+ ascosH), (40
where oy=(019+047)/2, and the anisotropy of the surface aloy
tension is P~ Peq=AP| 1+ % 7K, (42)
(Ap)
0107 011 (41)

whereK is the local curvature of the interface, counted posi-
tive for a droplet of “liquid” in a bath of “vapor.” The fact

In fact, when we subtract a cosine from the numerical resultghat its value is the same in both phases is due to the equality
we see the next harmonic, ¢8¢), with a very weak ampli- X(pgq)=)((p§q)=xeq in our model. The coefficient oK de-
tude. So the functional form given by the leading orderfines the capillary length. From E¢O), Egs.(30) and (34)
analysis is correct, and, when high numerical precision isve can see that it is proportional £ This could have been
necessary, we can work with E10) instead of Eq(38).  expected because in the continuum ligis the only intrin-
For the square lattice the surface tension has maximum vasic length scale. Herring show§a5] that, for an anisotropic
ues in the diagonals, which gives a negative anisotropy witlsurface tension, this condition has to be modified; the capil-
definition (41). This corresponds to the usual conventions.lary lengthd becomes a function of orientation, and the sur-
We can easily repeat similar calculations for other latticeface tension is replaced by the interface stiffness

S_ .
opton
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shown that the Gibbs-Thomson effect can explain the forma-
tion of stable dendrite tips in the lattice diagonals. We now
have to analyze the other possible effects.

VI. ANISOTROPY OF THE DIFFUSION COEFFICIENT

In the region surrounding the growing aggregate, the con-
centration gradients are small. The equation of motion re-
duces to a diffusion equation. However, the currents and
concentrations are defined on the lattice, and expreg&®n
for the diffusion coefficient involves discrete Laplacians via
the chemical potentials. Hence the diffusion coefficient var-
ies as a function of the orientation of the concentration gra-
dient. Starting out from an initial condition with rotational
symmetry as in Fig. 3, this leads to a variation of the currents
with the orientation which could cause the formation of tips
where the diffusion is enhanced. We will now analyze this
anisotropy.

FIG. 10. Same as Fig. 2, but a next-nearest-neighbor interaction !magine a  uniform  concentration  gradient
has been introduced. F&F=0.1T,, p,=0.02, ande./e,=2, we  YP=(VPy,Vpy) in a certain region of the lattice. We will
obtain eightfold structures. denote its direction byn=(n,,n,). Then the concentration
differences between neighboring sites akép, in the x di-

axe rection, andaVp, in they direction. We choose a reference
d(g)= A 3 (o(6)+a"(6)), (43 point of concentratiomp, and develop Eq(13) to first order
(4p) in Vp. The result is
whereo” denotes the second derivative @fwith respect to D= Dol Po) (1 + ap(po.kT)avp,) (45)

6. Using expressioit40), we find that
for a link in thex direction, and the analog for thedirec-

az)(eqffo tion. Dy,om, is the homogeneous diffusion coefficient defined
d(0)=~Tapyz (1~ 15ascosd). 449 in Eq. (23, anday is given by
Th.e capillary length _stays roughly prqportional to the corre- ap(Po,KT) = 1-kTx'(Po) 1 , (46)
lation length, and diverges at the critical temperature. The 2kTx(po)  1—po

anisotropy is a function of temperature only, and vanishes at, i L ) i

the transition, where all details of the lattice structure areX denoting the derivative of with respect tp. The micro-
wiped out. In real systems, the capillary length is usually ofSCOPIC currents arg,=—ab,Vp, andj,=—ab,Vp,. The
the order of nanometers, that is, at least one order of magnf'2Croscopic current crossing a surface normal to the gradi-

tude above the interatomic spacing. In our model we reacfNt IS then given by the sum over the microscopic currents in
this order of magnitude only fokT,—kT<1072 In the all the links that cross the surface. A surface of lenfgth
. .

simulations presented in Sec. lll the capillary length is(L>a) normal ton cuts approximatelyn, links in the x
smaller than the lattice constant. This is not in contradictiorfiréction, andLn, links in they direction. The resulting
with the continuum approach, because the physical quantitj!@croscopic currerfper unit surfacgis
is the product ¢K), which gives the concentration deviation
at the interface. As long as the tip radius given by Ep)
stays reasonably Iarger than the lattice constant, this afnserting Eq(45) gives(using the fact that is a unit vectoy
proach should be valid.

We see that we cannot vary capillary length and anisot- |i|=alVp|Dhonl 1+ Vplap(|ni+In3)].  (48)
ropy independently. To do this, we would have to introduce
another free parametéesides the temperatyr@he natural We see that the second order introduces anisotropy. The term
choice is to introduce more interactions. For example, byin n® has a maximum value 1 on the lattice directions, and a
introducing next-nearest-neighbor interaction and playingninimal value 1¥2 on the diagonals. This anisotropy is pro-
with the ratio between the two interaction strengths, we sucportional to the concentration gradient and to the function
ceeded in screening the fourfold component of the anisotey, . Typical values ofa|Vp| in our simulations are around
ropy completely, arriving at eightfold structuré¢Big. 10). 10~%. For high temperatureqp, is negative and of order
Increasing the range of the interaction, we thus can alternasnity, which makes this anisotropy two orders of magnitude
tively approach isotropic growth or achieve a desired anisotless than the anisotropy of the surface tension. For lower
ropy. temperaturesg begins to grow and becomes positive: in

We can compare our result to the standard boundary corthe concentration ranges we used, it is of order 10kfor
dition used in two dimensions. We see that the favored=0.5, and of order 100 fokT=0.1. Still, the resulting an-
growth directions, which are marked by a minimum of theisotropy is small compared to the static anisotropy. More-
capillary length, are indeed the diagonals. Hence we havever, becauseyy is positive, the diffusion coefficient is

|j|=alVp|(DynZ+Dyn?). (47)
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slightly higher in the(10) direction. This means that diffu- .

sion is enhanced along the lattice directions, which should P

lead to tips in the lattice directions instead of the observed “_ 0.8

tips. We conclude that the anisotropy of the diffusion coef- S peq lb 3
vV = -

ficient is not the cause of the observed tip formation.

VIl. DYNAMICS OF PLANAR INTERFACES 0.4 K

The first step toward understanding the dynamical behav- \\/
ior of the full model has to be a study of planar in_terfgces. 0.2 e Bquilibrium profile
The curvature is zero, which allows us to isolate kinetic ef- _
fects. In addition, when the interface is oriented normal to u=x-—vt
the (10)- and (11)-symmetry directions, we can reduce our ~ '° e 0 3 10 15 20
array of equationg6) to a quasi-one-dimensional set of
equations, which are much easier to handle, analytically and FIG. 11. Stationary interface shape fb=0.86T, andv =103,
numerically. Then each concentratipp represents a whole obtained from the continuum treatment to be publish2@]. For
layer of lattice sites. For thél0) direction the reduced ver- comparison, the equilibrium profile is displayed as a broken line.
sion of (6) reads

dp tinuous translational symmetry, a true stationary state might
K ) o i
WZWOZ {pPK(1—py)exd x(pr—1+2Pk+ Pr+1)] even not exist at all. Indt_aed, monitoring the dynam#s)
] closely, we see that the interface shape and the growth ve-
locity oscillate slightly while the interface advances, with a
—p:(1—pyex i1t 2p;it+p; . 4 . . ' o
Pi(1=Prexilx(p;—1+2p;+pj+ )]} (493 period that corresponds exactly to one lattice step. This is
whereas for thé11) direction it is correlate_d_ to vgriations of the surface tension with the inter-
face position discussed in Sec. IV: the interface slows down
when it must “climb” a hill of surface tension, and acceler-
dpg ates when it “slides down” in the next valley. To investigate
szozj: {2pk(1—pjexd 2x(Py-1+ Pr+1)] the dynamical anisotropy of our system, we have to treat the
discrete problem. We will proceed by averaging over one
—2pj(1—-pexd 2«(pj-1+pj+ )1} (49b period, which is certainly a valid procedure at high tempera-
_ _ tures as discussed above.
The factors 2 in the second formula come from the lattice \ye integrated the sets of equatiof@) for various sys-
geometry. In both cases takes the valuek—1 andk+1in  {em sizesL, temperatures, and currents. The initial condi-
the sum. Attention has to be paid to the fact that the pointgsns were the corresponding equilibrium shapes centered at
are not at equal spacing: in directittD), the distance of two 5 sitionn,. As boundary conditions, we imposed zero cur-
layers isa, whereas in directiofll) it is a/v2. rent atn=0 and a currenjy at n=L—1. To calculate the

These systems of equations can be integrated much MOLL - ant from site O to site 1, we chose “mirror” boundary

rapidly, and we have carried out extensive numerical studies, .. - .
We are interested in the departure of the interface shape frognditions,p_;=po. To have a stationary state, we used a

the equilibrium shape. This departure depends on the ime{povwlg frarr1ne: (;ncl:e thefl.nterfgce movedh:cor\(/jvabrd bky on(;a I\?\;'
face velocityv, which in turn is a function of the thermody- ice step, the whole configuration was shifted backward. We

namic driving force. To have a time-independent solution0Und that after a certain transient, the system settled down
a configuration independent of initial conditions. The pro-

we thus must seek the stationary states; that is, the situatioﬁ% k ot - i
in which v is constant. For a conserved one-dimensionaf”es_Obtamed |n_th|s way have the shape depicted in Fig. 11.
system a traveling front with constant velocity and vanishingBehind the moving front, a plateau at concentratishde-
concentration gradients at infinity is impossible, because thi¥elops.pz is a function of the velocity and always smaller
would violate mass conservation. To have an advancinghan the equilibrium concentration of the dense phage
front, we have to feed a current into the system. After alhe interfacial region preserves the overall shape of the equi-
transient, the profile settles down to a stationary state; that idiprium profile when the velocity is not too large. Far in front
the profilep(x,t) should become a function of the reduced of the interface(at several times the interface thickne8s
variableu=x—vt only. We want to determine the form of we find a ramp profile where the concentration gradient is
this stationary profile as a function of the velocityand the  nearly constant. The exact solution of the diffusion equation
relation between current and velocity. (with D constantin a moving frame is an exponential; how-
A complete treatment of this issue is beyond the scope oéver, in our case the diffusion lengtk D/v is of order 16,
this paper, and will be published elsewhé@6]. We can so that we can safely approximate the profile by a straight
completely solve a continuum approximation following ideasline. We observe that its intercep§ at the interface position
similar to those of Langer and Seker¥/], who worked on  ng is also a function oty, and always larger than the equi-
the continuous Cahn-Hilliard equation. The discrete problenlibrium concentration of the dilute phaqe{fq. For small ve-
is much more intricate. In fact, given that we have no conocities and high temperaturep? and p# are linear func-
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tions of the velocity. At low temperaturep,.(v) develops capillary length of 30%. Hence the order of magnitude of
important nonlinearities due to the slow dynamics in the curvature effects is IG. On the other hand, the coefficient
phase. B, is of order unity, with an anisotropy of about 30%, which
How do these modifications influence the macroscopidor a velocity of 10°° gives a kinetic anisotropy of the order
boundary conditions at the interface? The concentrationg 5 Hence we conclude that kinetic effects are negligible
given by condition(1) is in fact a concentration in the dilute pefore the anisotropy of the surface tension. This could be
phase immediately ahead of the interface. In our model, thigjtferent for higher temperatures, where the radii of the cur-
is precisely the vallu@g defined above. Hence whesf is  yature grow, and the anisotropy of the surface tension van-
linear inv, this defines the kinetic coefficiefth, ishes rapidly. In this case it should be difficult to detect
whether static or kinetic anisotropy is the dominating effect,

for they both favor the growth in the lattice diagonals.
p§—pE=vApso. (50) y g g
Plotting the intercept against the velocity, we can determine
Bo-
The concentration deviation in the growing phase is VIIl. SUMMARY

known as “solute trapping.” It is so called because a certain
species of atom&n our model: the holgsare trapped in the
advancing front, even if this increases their chemical poten
tial. This does not influence the boundary conditi@n but

it modifies the relation between incoming flux and velocity.
To order zero, this relation is given by

We showed that the macroscopic and mesosc@iase-
field) equations of dendritic growth can be obtained from a
microscopic master equation in a mean-field approximation.
It is interesting to note that the complex pattern formation
process can be obtained effectively from simple local rules.
We calculated the orientation-dependent surface tension, and
gave numerical results for the kinetic coefficient, finding
lil=vAp, (51) goqd agreement \_Nith the standard macroscopic_ phenomeno-
logical theory. This approach allowed us to derive all mac-

wherej is the current arriving at the interface. However, thisroscopic coefficients in terms of the microscopic interac-

supposes that the current has to “fill in” the complete mis-tions, which might lead to a deeper understanding of the
cibility gap. At nonzero velocity, we have to replaag by  connections between them. We believe that our model is a

p2—pk. In the linear region, we writp & — p&=v 8p<. The faithful representation of dendritic growth for small super-
first correction to Eq(51) thus reads saturations, and when the hierarchy of length scales
a~ ¢<R<L is satisfiedL is the linear system size, aila
typical radius of curvatupe
lil=v(p2—pB)y=vAp+v2(6p2—Bo). (52 The anisotropy of the surface tension is related to shape
variations of the equilibrium interface: we have to include
We see that the two coefficienfps and B, are sufficientto  shape corrections depending on orientation. The kinetic co-
determine the coupling of the interface to the diffusion fieldefficient can be derived from the shape of stationary inter-
and the flux-velocity relatior(52) in the high-temperature faces at small velocities. Thus we see that interface structure
region. We have determinedps and B, numerically for  and dynamics play key roles in the passage from microscopic
several temperatures in the two main symmetry directionsto macroscopic descriptions.
The former is negative of ordet10 and has a slight anisot- The static anisotropy is a consequence of the lattice struc-
ropy, which is about 1% fok T=0.8, and decays with grow- ture. In some sense, this is a trivial statement because it is
ing temperature. The latter is of order unity and develops avell known that discretization of continuous equations leads
stronger anisotropyabout 30% for temperatures between to anisotropic behavior. The advantages of the present ap-
0.5T. and 0.8 .. The higher value is in théL0) direction, proach are that we can precisely quantify this effect, and that
slowing down growth in this direction. However, the impor- we have an underlying microscopic process which suggests
tant differencedps— B, shows only a slight anisotropy be- that our lattice is the real crystal lattice, which evidently is
cause the anisotropies of the two coefficients compensai@so the source of anisotropy in the “real world.”
each other. More details will be published sd@6]. Analyzing the possible origins of the anisotropy, we find
We are now ready to make a comparison between kinetithat in the temperature domain of our simulations the needle
and curvature effects. We have not yet made simulations itips are stabilized by the anisotropy of the surface tension.
two dimensions at sufficiently high temperatures to reach th&hus the Gibbs-Thomson boundary condition is crucial for
temperature range in which the analytic developments arthe formation of dendrites. This is corroborated by a com-
valid with certainty. However, our numerical results for one-parison of our results to those of Rg1L6]: the authors used
dimensional systems indicate that there are no qualitativa phase-field model with a conserved phase field, coupled to
changes when we go to lower temperatures. We will therea diffusion field. They integrated on a square lattice, which
fore compare with the data from our simulations. All valuesgives an equation of motion for the phase field very similar
are in units of the lattice constaat, and the overall time to ours, and yet they observed isotropic growth and forma-
scalewy . For the simulation presented in Fig(8T=0.5), tion of seaweed structures. The reason for this is that the
typical curvatures are of order 0.1, typical velocities of ordercoupling term between the phase field and the diffusion field
107°. The capillary length is about 0.1, and the anisotropy ofdestroyed the lattice anisotropy in their case. Therefore we
the surface tension is 2%, which gives an anisotropy of theee that the modification of the coupling term in phase-field
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models may significantly alter the interfacial boundary con-further clarify the relations between DLA and dendritic

ditions and the observed structures. growth.
In summary, our model provides a method to relate mac-

roscopic growth processes to microscopic dynamics. It al-

lows us to investigate the interplay between microscopic in-

teractions and macroscopic quantities intervening in the

phenomenological growth equations. A serious limitation up We would like to thank M. Kolb, V. Fleury, and W.
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