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Dendritic growth in a mean-field lattice gas model

Mathis Plapp* and Jean-Franc¸ois Gouyet†

Laboratoire de Physique de la Matie`re Condense´e, Ecole Polytechnique, 91128 Palaiseau, France
~Received 18 April 1996!

We study a stochastic lattice gas model with attractive nearest-neighbor interaction. In a mean-field approxi-
mation, its local master equation can be written as a generalized Cahn-Hilliard equation. Numerical simulations
in two dimensions show the growth of regular snowflakes. Our microscopic equation of motion naturally
shows curvature and kinetic effects at the interface as assumed by the classic phenomenological equations of
dendritic growth. In addition, we find solute trapping. The dendrite tips are stabilized by the Gibbs-Thomson
boundary condition. We calculate the surface tension and show that it has the expected angular variation. Some
numerical results for the kinetic coefficient are given. We compare our model to other microscopic growth
models and the phase-field models, and discuss the influence of noise.@S1063-651X~96!01912-5#

PACS number~s!: 05.70.Ln, 68.70.1w, 05.50.1q, 68.35.Md
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I. INTRODUCTION

Phenomena of dendritic growth have been a challeng
subject for theorists for a long time and are an active field
research. The spontaneous pattern formation observe
many systems of different kinds in which growth is limite
by diffusion, and the question of morphology selection,
tract much interest.

The classic models of dendritic growth are continuu
models which state the problem in terms of partial differe
tial equations@1,2#. In this picture, the interface is sharp, th
diffusion field is smooth, and a Gibbs-Thomson bound
condition is specified on the interface. This leads to a hig
nontrivial free boundary problem. Parameters for this
proach are macroscopic quantities like surface tension,
illary length, and diffusion constants. These models ag
very well with experiments, and continue to furnish intere
ing results@3#. We want to show in this paper that macr
scopic equations can be derived from a microscopic mo
using the methods of out-of-equilibrium statistical mecha
ics.

Various microscopic discrete growth models have be
investigated. Usually, random walkers are used to appr
mate the diffusion equation. The most studied model
diffusion-limited aggregation~DLA !, invented by Witten and
Sander@4#. It would be desirable to obtain the macroscop
description by some kind of continuum limit of the micro
scopic dynamics. However, the problem of noise is n
trivial in this passage@5#: the approximation of the diffusion
equation by random walkers is valid only if a large numb
of walks are averaged, whereas, in classical DLA, each
ticle reaching the aggregate sticks immediately. This p
duces well-known irregular shapes. To model dendrites,
must obtain smooth shapes. Progress in this direction
been made, for example by the introduction of noise-redu
DLA @6#, or by models which incorporate curvature effec
@7,8#. In all these cases, however, the desired effec
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achieved by some algorithmic prescription, which introduc
a different parameter~the noise-reduction parameter or stic
ing probability!. There is no precise relation between the
parameters and the macroscopic quantities of the contin
approach. Thus we conclude that there is still a ‘‘missi
link’’ between the microscopic and continuum models.

In this paper we present a model which partially fills
this gap. We start from a stochastic lattice gas with attrac
nearest-neighbor interaction, and establish its mean-field
netic equations by a method recently developed by one of
authors and subsequently applied to the case of an or
disorder transition @9#. The mean-field approximation
changes the stochastic process into a system of coupled
linear differential equations~dynamical system! without
noise. Our model exhibits two-phase coexistence below
critical temperature and a first-order phase transition. Its s
ics are completely equivalent to those of the usual Is
model, but, in contrast to the widely studied Kawasaki e
change dynamics@10#, in our model the dynamics are no
invariant under a global spin-flip. We show that our equ
tions of motion are a discrete version of a generalized Mo
B dynamics in the classification of Hohenberg and Halpe
@11#, or, in other words, that they constitute a generaliz
Cahn-Hilliard equation@12# with a mobility coefficient de-
pending on the shape of the local concentration profile.

Our model has some common features with the pha
field models introduced in recent years@13–16#. They work
with a diffusion field coupled to a phase field describing t
local thermodynamic state via a Ginzburg-Landau order
rameter. The interface is extended in space, and the boun
condition is a ‘‘built-in’’ feature of the local thermodynam
ics. In the present study, we consider the isothermal gro
of alloy dendrites from a supersaturated solid solution,
that we work with only one field, the concentration. O
equation of motion incorporates diffusion and aggregat
naturally which avoids the introduction of an often arbitra
coupling term. In addition, we have the picture of an und
lying microscopic process, absent in standard phase-fi
models. On the other hand, this connection to microsco
dynamics makes our model less flexible: if we want
45 © 1997 The American Physical Society
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46 55MATHIS PLAPP AND JEAN-FRANÇOIS GOUYET
change a macroscopic parameter, we must modify the mi
scopic interactions.

Lattice gas models are widely used tools to model ph
transitions and nonequilibrium phenomena. So it comes
no surprise that our model reproduces many of the cha
teristic features of first-order phase transitions: after a que
in the unstable region of the phase diagram, we obse
phase separation, whereas in the metastable region we
to put in a supercritical nucleus of one phase~denoted bya!
in a supersaturated bath of the other phase~denoted byb!.
This ‘‘germ’’ then grows by diffusion of material from the
surroundings. It is precisely in this situation that we obse
the characteristic Mullins-Sekerka instability@17# and the
emergence of nice ‘‘needle crystals.’’ From the continuu
theory it is known that the factors which control the sha
selection of needle crystals are the anisotropy of the sur
tension and attachment kinetics which induce a shift in lo
equilibrium when the interface moves. In our case, these
fects are resumed~to linear order! in a boundary condition a
the interface of the form

pb2peq
b

Dp
5d~u!K1b0~u!v. ~1!

Here pb is the occupation probability~equivalent to a con-
centration! immediately ahead of the advancing front,peq

b its
bulk equilibrium value,Dp the equilibrium miscibility gap,
d~u! the orientation-dependent capillary length,K the total
curvature~K51/R in two dimensions!, v the interface nor-
mal velocity, andb0~u! an orientation-dependent kinetic co
efficient.

Our goal is to derive the coefficientsd~u! andb0~u! from
the microscopic interactions. The Gibbs-Thomson bound
condition can be derived from the statics, and we direc
calculate surface tension and capillary length. A key role
played by the interface thickness, which is related to
correlation length, a physically accessible quantity. We fi
that the anisotropy of surface tension is mainly due to
variation of this length with orientation, a phenomen
which has already been observed in some phase-field mo
@14#.

To derive the kinetic terms, we have to analyze the
namics of a planar interface. We can determine the kin
constant numerically. In addition, we find a modification
the flux-velocity boundary condition due to solute trappin
that is a deviation of the concentration of the growing ph
from its equilibrium value. This effect is usually not include
in the classic formulations of the dendrite problem, proba
because for the velocities encountered in dendritic growt
is small. However, for larger velocities, solute trapping is
experimentally well-documented phenomenon, and theor
treatments by continuum equations@18# and phase-field
models@15# are available. To our knowledge this is the fir
time that all these phenomena are directly derived from
microscopic model in the context of dendritic growth.

It is clear that with an oversimplified model like ours w
cannot make a direct comparison with experiments. Gi
that our model is isothermal, and that there is no latent h
associated with its phase transition, it could be most clos
related to alloy dendrites@19#, where heat diffusion can ofte
be neglected and the growth is limited by the chemical in
o-
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diffusion of the two species. However normally in this ca
the phase diagram is more complicated than our simple
nary mixture. There is only one parameter in our theory,
coupling k5«/kT between nearest neighbors. All macr
scopic quantities like surface tension, anisotropy, and ca
lary length are functions ofk. Evidently, to compare our
model to real alloys, it would be necessary to include m
interactions so as to have the corresponding phase diag
and to reproduce measurable macroscopic quantities like
face tension correctly. But this presents no conceptual d
culties: the lattice gas model is flexible enough to inclu
other interactions. Here we treat a two-dimensional squ
lattice, but the model can be adapted to three dimensions
other lattice types without too many difficulties.

The remainder of this paper is organized as follows:
Sec. II, we present our model and derive its equation
motion. In Sec. III, we show some numerical simulations.
Sec. IV, we calculate the surface tension, which in Sec
serves to determine the capillary length. Section VI discus
the anisotropy of the diffusion coefficient, whereas Sec.
deals with the dynamics of planar interfaces. Section V
contains a summary and an overview of further perspectiv

II. MODEL

Consider a square lattice ofN sites in two dimensions
~coordination numberz54!. Let ni denote the occupation
number of sitei : ni51 if a particle is present, and 0 othe
wise. There can be at most one particle at a site. In addit
we assume an attractive nearest-neighbor interaction, w
leads to the Hamiltonian

H52«(
^ i , j &

ninj2m0(
i51

N

ni , ~2!

where« is the interaction energy~attractive:«.0!, m0 is an
external chemical potential, and the first sum goes over
nearest-neighbor pairs. Clearly, this is completely equiva
to the Ising model. It is also only another form of the Ham
tonian of a binary alloy: if we have two species of atoms~A
andB! with nearest-neighbor exchange energies«AA , «AB ,
and«BB , respectively, it is easy to verify@20# that by putting
«5«AA1«BB22«AB , and redefining the correspondin
chemical potentials, we can recover the Hamiltonian~2!. So
‘‘particle’’ and ‘‘hole’’ can stand as well for ‘‘A’’ and ‘‘ B’’
atoms, and the model can describe processes in alloys as
as the ‘‘condensation’’ processes more closely suggeste
the lattice gas terminology.

To define the dynamics, we assume that particles
move only via nearest-neighbor hops. In the alloy pictu
this corresponds to a simple exchange of atoms. We t
neglect vacancy or interstitial diffusion. We consider o
system to be in contact with a heat bath: temperature is c
stant, and energy is not conserved. Particles can be in
duced or taken out only at the boundaries.

We will rapidly recall that the derivation of a kineti
equation for this model that was previously published
more detail by one of the authors@9#. We are interested in
equations of motion for the mean occupation numb
pi5^ni&. The meaning of the average has to be defined,
there are essentially two possibilities. We can think of a te
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55 47DENDRITIC GROWTH IN A MEAN-FIELD LATTICE . . .
poral average, where we averageni over a time intervalt
which is much larger than the inverse jump frequency,
much smaller than the characteristic time scale of mac
scopic evolution~temporal coarse graining!. The second pos
sibility is spatial coarse graining in the spirit of real-spa
renormalization, which leads to the usual coarse-grained
energy functionals. We will adopt the first point of view
keep the meaning of« as a direct interatomic interactio
~spatial renormalization would lead to an effective intera
tion!.

We now want to write a local master equation. The nu
ber of particles being a globally and locally conserved qu
tity, the ‘‘concentration’’pi obeys a continuity equation

]

]t
pi52(

k
j ik , ~3!

where the sum goes over the nearest neighbors ofi , and the
current in the linkik is defined by

j ik5^ni~12nk!wik~$n%!2nk~12ni !wki~$n%!&. ~4!

The factorsni(12nk) take care of the exclusion principle
the start site must be full, the arrival site empty.wik($n%) are
transition probabilities depending on the local configurati
The physical picture behind our model is that the latt
points are located at the equilibrium positions of atoms i
crystal structure. Then an atom is trapped at its site i
potential well whose depth depends on the local configu
tion. If the thermal energy is small compared to the barr
heights, the jump probabilities follow an Arrhenius law. W
assume the barrier height to be the energy necessary to
away an atom from its site, that is, the sum of its bindi
energies. This leads to

wik~$n%!5w0expS «

kT (
a

ni1aD . ~5!

w0 is an isolated particle jump frequency which sets
overall time scale, and will be taken to be unity for conv
nience. Here and in the following,a will denote a lattice unit
vector, and summation overa means summation over a
nearest neighbors. We remark that this expression dif
from the usual Monte Carlo rule, where the transition rate
proportional to exp~2DH/2kT! with DH being the energy
difference between initial and final states. In our model,
transition rate depends only on the initial state. At this po
the asymmetry between particles and holes enters into
dynamics, because an atom surrounded by attractive ne
bors will stay in its place much longer than a hole s
rounded by other holes.

Finally, we make a mean-field approximation; that is,
all the above expressions we replace the occupation num
ni by their mean valuespi . Defining the couplingk5«/kT
and putting all the pieces together, we have~w051!:

]pi
]t

52(
k

H pi~12pk!expS 2k(
a

pi1aD
2pk~12pi !expS 2k(

b
pk1bD J , ~6!
t
-
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which constitute the equations of motion~EOM! for our sys-
tem. Clearly, a mean-field approximation is rather dras
especially in two dimensions. But, as usual, we hope to
tain a qualitative understanding by this simple treatment
possible improvement would be to use the path-probab
method devised by Sato and Kikuchi@21# or a dynamic
density-functional approach@22#, but the formulas are con
siderably more complicated. A study of these issues will
the subject of a forthcoming work.

We can cast these equations in a form more closely c
nected to out-of-equilibrium thermodynamics. Let us rewr
the expression for the current in the form

j ik52Sik~Ck2Ci !, ~7!

where@we consider the cases50 of Eqs.~10! in Ref. @9##

Sik5
1

c0
~12pi !~12pk! ~8!

is a term symmetric in the two sites, and

Ci5c0
pi

12pi
expS 2k(

a
pi1aD ~9!

is a local term. This term can be thought of as a local ac
ity,

Ci5exp~m i /kT!, ~10!

andmi is a local chemical potential. Then we can rewrite t
equation for the current in the form of generalized transp
equations:

j ik52Mik~mk2m i !, ~11a!

j ik52Dik~pk2pi !, ~11b!

with a generalized mobility

Mik5Sik
Ck2Ci

mk2m i
, ~12!

and a generalized diffusion coefficient

Dik5Sik
Ck2Ci

pk2pi
. ~13!

Both of these generalized transport coefficients include a
pendence on concentration as well as gradient and curva
terms. The connection with well-known field-theoretic mo
els @11# can be established by setting

m i5
]F~$p%!

]pi
, ~14!

F($p%) being a lattice version of a free energy function
We can choose the arbitrary constantsc0 in Eqs.~8! and~9!
and m0 in the Hamiltonian~2! in order to make the free
energy symmetric and the chemical potential antisymme
with respect to the interchangepi→12pi ~particle-hole
symmetry!. Then we find the following expressions:
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48 55MATHIS PLAPP AND JEAN-FRANÇOIS GOUYET
F~$p%!5(
k

S f k1 «

4 (
a

~pk1a2pk!
2D , ~15!

with a local potential

f k52
z«

2
~pk2

1
2 !21kT@pklnpk1~12pk!ln~12pk!#.

~16!

Here z is the coordination number of the lattice. This is
discrete analog of a continuous functional of the Ginzbu
Landau type, with« playing the role of a gradient energy,

F5E S f ~p!1
«a2

2
~¹p!2DdV. ~17!

Below the critical temperaturekTc5z«/4, and f k has a
double-well structure with two minima distributed symmet
cally around12. NearkTc , it can be closely approximated b
a quartic potential. For lower temperatures, higher or
terms become more important. The two potential wells
come very sharp and are located very close to 0 and 1~Fig.
1!.

The chemical potential becomes

FIG. 1. Local free energyf as a function ofp for a temperature
T,Tc and the mean-field phase diagram of a simple binary m
ture: the two equilibrium concentrationspeq

a andpeq
b correspond to

the minima of f . The regions in light grey are unstable; the da
grey corresponds to metastable states.
-

r
-

mk52«(
a

~pk1a2pk!2z«S pk2 1

2D1kT ln
pk

12pk
.

~18!

In the first term we recognize a discrete Laplacian: t
chemical potential takes into account local curvature of
concentration profile, a natural extension as already noti
by Cahn@23#.

We remark that the EOM@Eq. ~6!# indeed describe a sys
tem approaching equilibrium: when we calculate the to
time derivative of the free energyF, we find

dF

dt
52 1

2(
i ,k

M ik~mk2m i !
2. ~19!

Mik always being positive, the free energy can only decrea
and the stationary states satisfymk[const, as expected fo
equilibrium states.

Now we are ready to establish the~well-known! phase
diagram: we are looking for the minima of the free energ
considering only homogeneous states. Sopk[p and the
equilibrium concentrations are given by the solutions of
equation

m~p!5
]F~p!

]p
52z«S p2

1

2D1kT ln
p

12p
50. ~20!

Below the critical temperature there are two stable solutio
peq

a and peq
b . Here and in the following,a will denote the

dense~‘‘liquid’’, ‘‘ A rich’’ ! phase and,b the dilute~‘‘gas-
eous’’, ‘‘B rich’’ ! phase. The classical spinodal is given
the solutions of

]m~p!

]p
52z«1

kT

p~12p!
50, ~21!

in our case a parabola. The corresponding phase diag
~Fig. 1! is typical of a binary mixture~liquid or alloy!:
the order parameter is the miscibility gapDp(T)
5peq

a (T)2peq
b (T). The transition is first order except at th

point p51
2, which corresponds to zero magnetic field in t

Ising model. Let us remark that this is exactly the mean-fi
phase diagram of the Ising model. So the statics are c
pletely symmetric with respect to the interchange of partic
and holes. But the dynamics are not. If in expressions~12!
and ~13! for mobility and diffusion constants we take th
limit of homogeneous systems, we find

Mhom~p!5
p~12p!

kT
exp~2kzp! ~22!

for the mobility and

Dhom~p!5„12kzp~12p!…exp~2kzp! ~23!

for the diffusion coefficient. We see that the exponent
term destroys the symmetry: dynamics is slower in the de
phase. The temperature can be used to ‘‘tune’’ the ratio
tween the diffusion constants in the two bulk phases:
have, in view of the symmetry of the two equilibrium con
centrations,

-



.
e

u
o

As
im
e

u
ith
pr
s
e

ia
a

th
hi
d
fo
.
ur
w

n
iv
le

ag-
ob-
ter
ng
lops
w
ll-

ors
he
hat
ing
ists
the

tics
ill
ec-
re
e-
un-
is

ice
m-
ale

as
e

on-
the
low

ita-
on-

le

55 49DENDRITIC GROWTH IN A MEAN-FIELD LATTICE . . .
Dhom~peq
a !

Dhom~peq
b !

5exp~2kzDp!, ~24!

where the miscibility gapDp is a function of temperature
The widely used symmetric model, where this ratio is tak
to unity, is approached only in the limitT→Tc .

III. SIMULATIONS

We studied the behavior of our model by numerical sim
lations. To this end, we must integrate the equations of m
tion. We used a simple Euler finite difference algorithm.
usual in such algorithms, the speed of the calculation is l
ited by a numerical instability which occurs when th
timestep becomes too large. The limit on the timestep can
calculated by a linear stability analysis. We performed sim
lations with timesteps near this limit, and control runs w
smaller timesteps gave the same results. All simulations
sented in this section are performed on a standard work
tion, and each took several hours CPU time. The bigg
lattices we used are 2003200 points.

To observe diffusion-limited growth, we chose as init
condition some ‘‘seed’’ of thea phase surrounded by
‘‘bath’’ of supersaturatedb phase: the concentrationp` at
the exterior of the droplet must be bigger thanpeq

b to have a
nonzero thermodynamic driving force, and smaller than
concentration on the spinodal to avoid nucleation. In t
situation a concentration gradient develops and drives a
fusive flux toward the interface. It is easy to see that
small gradients the EOM~6! reduce to a diffusion equation
For low temperatures, we observe the formation of fo
spoked snowflakes as depicted in Fig. 2. To speed up gro
we held the concentration constant and equal top` at the
exterior of a circle. We emphasize that this doesnot corre-
spond to free dendritic growth in supersaturated solutio
but for the moment we are interested only in the qualitat
features of the branching instability, and not in the detai

FIG. 2. Fourfold ‘‘snowflake’’ grown on a 2003200 square
lattice at T50.1Tc , and a fixed concentration on a large circ
p`50.02.
n
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finger shapes. We checked that the overall shape of the
gregate is independent of the boundary conditions. To
serve the initial stages of the branch formation in grea
detail, in Fig. 3 we show a stroboscopic plot of a growi
circular germ at higher temperature. The aggregate deve
small bulges in the diagonals of the lattice which gro
gradually to form fully developed branches. This is the we
known Mullins-Sekerka instability@17#.

What interests us here is the mechanism which fav
growth in the lattice diagonals, and stabilizes the tip of t
growing needles. From macroscopic theories it is known t
a necessary prerequisite for the existence of stable grow
tips is an anisotropy of the surface tension. This effect ex
in our model, but there might be other effects due to
lattice: the diffusion coefficient, which ‘‘lives’’ on the lattice
bonds, might be anisotropic, and the attachment kine
could play an important role. To solve this puzzle, we w
treat each of those effects separately in the following s
tions. We remark that the favored growth directions a
stable: when we start growth with an initial condition pr
senting tips in the lattice directions, these tips become
stable and split to form two new tips in the diagonals. This
depicted in Fig. 4.

The simulations of Figs. 2 and 3 have the same latt
size. Hence we see that there is a global scaling with te
perature. This is due to the fact that the intrinsic length sc
of our model is the characteristic interface widthj, which is
shown below to diverge whenT approachesTc . However,
given the dependence of the dynamics on temperature
expressed in Eq.~24!, we expect this not to be a simpl
renormalization of lengths.

It is clear that for a temperature ofT50.1Tc as in Fig. 2,
this characteristic length is much smaller than the lattice c
stant, which means that the mean-field approximation is
least doubtful. Our analytical developments presented be
are strictly valid only at high temperatures (T>0.7Tc). How-
ever, our numerical results indicate that there is no qual
tive change. To have simulations corresponding to well c

FIG. 3. Stroboscopic plot of a growing droplet on a 2003200
lattice, starting from a circular initial state~radiusR510!, showing
the Mullins-Sekerka instability.T50.5 Tc andp`50.1.
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50 55MATHIS PLAPP AND JEAN-FRANÇOIS GOUYET
trolled analytics, we would have to increase the system
and temperature, which means larger CPU times. This is
rently being done.

Another important issue is noise. Real dendrites are
needle crystals, but present sidebranches. To observe
branching in our model, we have to add noise. We can
this either by adding a conservative noise term to the eq
tions of motion or by adding a quenched noise: at each s
we assign a randomly chosen local energy. In both ca
sidebranches develop. Figure 5 shows a picture gener
with the former method. The fact that sidebranching activ
is connected to noise is known, but a quantitative descrip
is still lacking.

Even for the deterministic evolution, a noisy initial co
dition may lead to chaotic behavior when the average c
centration gradient is not parallel to one of the growth dir
tions. Figure 6 shows a simulation in cylindrical geome
~periodic boundary conditions in they direction!, where we
placed a ‘‘substrate’’ at the bottom which consists of o
layer of solid and one layer of ‘‘rough’’ surface, where th
concentrations were chosen at random between 0 and 1
the top, the concentration was fixed. We see that the in
noise is sufficient to destabilize the planar surface: dendr
with sidebranches occur.

The characteristic width of the developing structures
pends both on temperature and incoming flux. It is kno
from dendritic growth theory that the tip radiusR of the
selected dendrites is roughly the geometric mean of the
illary lengthd0 and the diffusion lengthD/v, wherev is the
tip velocity:

R'Ad0D/v. ~25!

Given that the former is proportional to the correlation leng
j, whereas the latter is inversely proportional to the veloc
the structures should sharpen when the temperature
down or the flux goes up, which is indeed what we obser

We will now analyze more in detail the different facto
contributing to the anisotropy, and if possible give analy

FIG. 4. Same as Fig. 3, but starting from a seed presenting
in the lattice directions, which are unstable growth directions.
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expressions for the various effects. These will be chec
against numerical calculations.

IV. SURFACE TENSION

It should be clear from the beginning that all effects
anisotropy are due to the lattice, and hence invisible in
continuum treatment of the problem. For the sake of co
parison, let us nevertheless recall very briefly the continu
definitions.

Consider a planar interface whose normal coordinate ix.
At equilibrium, the chemical potential is constant througho
the system, and for planar interfaces it is zero by symme
If the concentration varies slowly on the scale of the latt
spacinga, Eq. ~18! can be approximated by

2«a2
]2p~x!

]x2
1 f 8„p~x!…[0. ~26!

Multiplying both sides withdp/dx and integrating once
gives

1
2«a2S ]p

]x D
2

5 f ~p!2 f ~peq!, ~27!

a relation which, in the language of the well-known m
chanical analog, expresses the equipartition of kinetic
potential energies. The surface tension is defined as the
cess free energy per unit surface,

s5
F int2Fhom

S
, ~28!

whereF int andFhom are the free energies of the equilibriu
states with and without an interface, respectively. Using
free energy functional~17! and the relation~27!, we have, in
two dimensions,

ps

FIG. 5. Same as Fig. 2, but a conservative Langevin noise t
is added to the equations of motion: sidebranches appear.
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FIG. 6. Growth from a rough interface on a 150380 lattice. Concentration in the second ‘‘substrate’’ layer varies randomly betwe
and 1; no other noise is added. The concentration far from the substrate is fixed to 0.02, andT50.1Tc .
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s5«E
2`

` S ]p0~x!

]x D 2dx, ~29!

wherep0(x) is the solution of the differential equation~26!
subject to the appropriate boundary conditions; that is,
solution which connects the two equilibrium concentratio

For a quartic potential, the exact solutionp0(x) is a hy-
perbolic tangent; for nearly all double-well potentials, t
tanh is a good approximation.~Small! corrections can be
easily calculated~see below!. We can determine the chara
teristic thicknessj of the interface by a well-known metho
~see, for example, Ref.@24#!. Far from the interface, the con
centration approaches the equilibrium valuepeq ~in view of
the symmetry of the two phases, here we will drop the
perscriptsa andb!. Writing u(x)5p(x)2peq and lineariz-
ing ~26! in u yields

2«a2u9~x!1m8~peq!u~x!50. ~30!

The solution is an exponential,u'exp~x/j0!, where the in-
terface width is given by

j05aA«xeq. ~31!

Here, we have defined the susceptibilityx(p) by

x~p!215
]m~p!

]p
, ~32!

andxeq5x~peq!. This characteristic length depends on te
perature and diverges with power1

2 asT approaches the criti
cal temperature, as expected for a mean-field correla
length.

Let us, then, approximate the equilibrium interface to
roth order by

p0~x!5 1
21

Dp

2
tanhS x

2j0
D ~33!

~Dp is the miscibility gap!. Calculating integral~29!, the
continuous surface tension is given by

sc5
«~Dp!2

6j0
. ~34!
e
.

-

-

n

-

Now we are ready to make comparisons to our discrete
tem. The exact equilibrium states can be found numeric
by solving the set of equationsmk50, subject to the appro
priate boundary conditions which enforce an interface in
given direction. For the symmetry directions~10! and ~11!
this is fairly simple, because the problem reduces to an a
of equations for points on a line, which can be indexed by
integer. Therefore, we can use Eq.~18! for an iterative solu-
tion. To do this, we can start out, for example, at the sy
metric pointp05

1
2. Then we have to pickp1 and iterate Eq.

~18!. p1 has to be chosen in order to satisfy the bound
condition pk→peq for k→`. By a simple ‘‘shoot and test’’
algorithm we can obtain great precision very rapidly. Equ
tion ~18! is the discrete analog of a differential equation, so
is not surprising that only the boundary condition can sel
a solution. Another quite rapid method to obtain exact int
face shapes is simply to use the equations of motion and
the system relax to the equilibrium state.

Once the equilibrium state is known, we can use the ba
definition ~28! and our discrete free energy functional~15! to
determine the surface tension. We find that for the squ
lattice at all temperatures the surface tension in the lat
diagonals,s11, is slightly higher than along the lattice axe
s10. In addition, the surface tension depends on the posi
of the interface with respect to the lattice. If we define t
position of the interface by the symmetric pointp51

2, s is
extremal when the interface is exactly on a lattice po
~‘‘odd number of sites’’! and in the middle between two
points ~‘‘even number of sites’’!. This is a consequence o
the discrete structure of our model. It is known that in so
situations as e.g., in epitaxial growth, physical quantit
vary with the coverage, that is, with the average occupa
number of a given crystal plane. However, it seems diffic
to establish a direct relation to such phenomena by
mean-field treatment. We remark, however, that our mo
leads to physically reasonable behavior. First, these va
tions are much weaker in the~11! direction than in the~10!
direction. Arguing in terms of the stochastic process, this
be understood from the fact that an atom arriving on a~11!
surface has two connected links, independent of the co
age, whereas on a~10! surface this number varies between
~nearly empty surface! and 3~nearly filled surface!. Second,
consider a vicinal surface, that is, an interface making
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small angle with a singular direction. The interface will te
to attach to its configuration of lowest surface tension, wh
will cause the formation of well-localized steps if the inte
face is not too thick. This is the case in our model for te
peratures belowT'0.7Tc . For higher temperatures, the e
fect decays rapidly: forT50.8Tc , the amplitude of the
variations ofs with position is only about 1% of the ampli
tude of angular variations, and it decays much more rap
when we approach the critical temperature. This allows u
neglect it in the high-temperature domain, corresponding
rough interfaces.

We make the approximation that the profile of the int
face is invariant under translation parallel to the surface;
is, the concentration at a given lattice point depends only
the projection of its coordinate vector onto the normal. Co
sider a planar interface whose normaln makes an angleu
with a lattice axis. We will denote byx the projection of the
coordinate onn. A first consequence of the lattice structure
that the thicknessj becomes dependent onu. This can be
seen as follows. Instead of Eq.~26!, we now have to linearize
the discrete equation~18!. Writing pk5peq1uk , and explic-
iting the discrete Laplacian, we find.

2«„u~x1a cosu!1u~x2a cosu!1u~x1a sinu!

1u~x2a sinu!24u~x!…1m8~peq!u~x!50. ~35!

We see that this equation is solved byu(x)5exp„x/j~u!…,
provided that

coshS a sinu

j~u! D1coshS a cosu

j~u! D225
1

2«xeq
. ~36!

From this equation, we can determinej~u!. For high tem-
peratures wherej is not too small, we can expand inj and
obtain, to leading order inu,

j~u!5j0S 11
1

32«xeq
1

1

96«xeq
cos4u D , ~37!

wherej0 is given by Eq.~31!. There is a general correctio
to the continuum result due to the finite lattice step, plus
explicit anisotropy, which displays the fourfold symmetry
the square lattice. As expected, forT→Tc , the details of the
lattice structure are suppressed~the susceptibility diverges!:
we recover the continuum result, and the anisotropy v
ishes.

If we use this result together with the ansatz~33! and the
continuum formula~34! to calculate a first order approxima
tion to the surface tension, we find

s~u!5scS 12
1

32«xeq
2

1

96«xeq
cos4u D . ~38!

Comparing this result to the exact values foru50 and
u5p/4, we find that the values ofs are well reproduced for
high temperatures. On the contrary, the anisotro
~s102s11!/~s101s11! is largely overestimated even for hig
temperatures~Fig. 7!. The reason is that the anisotropy co
tains the difference of two surface tensions, which is a s
ond order term and needs more precise calculations.
h
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anisotropy is an important control parameter in the dend
problem, and hence we will make some effort to obtain b
ter results.

There are two reasons for the difference between Eq.~38!
and the numerical results. The first is the use of the c
tinuum relation~29!. The passage from Eqs.~26! to ~27!
makes use of the chain rule, which is valid for the continuu
case but not for finite differences. This means in particu
that the equipartition of the energy is no longer valid. Inde
if we try to improve our result by using simply the discre
zation of Eq.~29!, we find that the anisotropy changes sig
So there is an important contribution from the potential e
ergy, and we have to use the complete definition~28! to
evaluates.

The second reason is the use of the ansatz~33!. It is a
good approximation of the equilibrium solution far from th
interface, but not around the origin, which makes the m
important contribution to the surface tension. When we co
pare the exact profiles with Eq.~33! using the appropriate
discretej~u!, we indeed find that the differences are localiz
around the origin. Moreover, we find that in the~10! direc-
tion the interface is steeper than predicted by~33!, whereas
in the ~11! direction it is flatter.

To account for the second effect, we must improve o
ansatz by adding a correctiong(x). This correction should be
antisymmetric, and decay to 0 faster than exp~x/j! in order to
leave the limit values and the linear order terms as fixed
Eq. ~35!. If we expand the potential in Eq.~18! in powers of
~p2 1

2!, we see that powers of the initial tanh function can

FIG. 7. Surface tension in the lattice directions and anisotro
as a function of temperature. Circles are numerical results, lines
the first-order approximation~38!. Using the improved method~40!,
we obtain a perfect agreement.
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55 53DENDRITIC GROWTH IN A MEAN-FIELD LATTICE . . .
candidates for an improved solution, for then we can so
order by order. To satisfy the other conditions ong(x), we
chooseg(x)5bd2/dx2tanh~x/2j!, which leads to the follow-
ing ansatz:

p~x!5p0~x!1g~x!5
1

2
1S Dp

2
2

b

2j2D tanhS x

2j D
1

b

2j2
tanh3S x

2j D . ~39!

Hereby, we introduce another degree of freedom, the par
eterb~u!, which has to be fixed. To achieve this, we use
complete equation~18!, taken at a pointx0 not far from the
origin, which we solve numerically forb. The result depends
on the choice ofx0: here we recover the variation of th
surface tension with the interface position. As discus
above, for high temperatures this effect is negligible. An
ample of a plot ofb~u! is shown in Fig. 8. We see thatb
changes sign between the symmetry directions, giving g
agreement with the numerical calculations.

Then we can calculates~u! using the discrete formula
~15! and~28!. The results in the high-temperature region a
very good: they agree up to the fifth decimal with the num
ics. This method is easy to handle, because it needs only
numerical solution of one equation instead of the optimi
tion procedure necessary to obtain the exact interface sh

Figure 9 shows a plot ofs~u!. We see that it can be ver
well approximated by a fit of the form

s~u!5s0~11aScos4u!, ~40!

where s05~s101s11!/2, and the anisotropy of the surfac
tension is

aS5
s102s11

s101s11
. ~41!

In fact, when we subtract a cosine from the numerical resu
we see the next harmonic, cos~8u!, with a very weak ampli-
tude. So the functional form given by the leading ord
analysis is correct, and, when high numerical precision
necessary, we can work with Eq.~40! instead of Eq.~38!.
For the square lattice the surface tension has maximum
ues in the diagonals, which gives a negative anisotropy w
definition ~41!. This corresponds to the usual conventio
We can easily repeat similar calculations for other latt

FIG. 8. Plot of the coefficientb~u! of the shape correction to th
hyperbolic tangent profile given by Eq.~39!, for T50.86Tc .
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types, e.g., the triangular lattice~z56!. Here we find a
weaker sixfold anisotropy, this time with the maxima of th
surface tension in the lattice directions. Simulations ana
gous to Fig. 2 indeed show six-spoked snowflakes with th
arms pointing in the lattice directions.

V. GIBBS-THOMSON BOUNDARY CONDITION
AND CAPILLARY LENGTH

Curved interfaces modify the local equilibrium concentr
tions. Contrary to the planar case, there is symmetry bre
ing between droplet and exterior, which leads to a nonz
chemical potential. When the radii of the curvature are mu
larger than the lattice constant, we can use a continuum
proximation. For isotropic surface tension, it is straightfo
ward to show@24# that the first order correction to concen
trations in and out of a droplet is

p2peq5DpS 11
a2sxeq

~Dp!2
K D , ~42!

whereK is the local curvature of the interface, counted po
tive for a droplet of ‘‘liquid’’ in a bath of ‘‘vapor.’’ The fact
that its value is the same in both phases is due to the equ
x~peq

a !5x~peq
b !5xeq in our model. The coefficient ofK de-

fines the capillary length. From Eq.~20!, Eqs.~30! and ~34!
we can see that it is proportional toj. This could have been
expected because in the continuum limitj is the only intrin-
sic length scale. Herring showed@25# that, for an anisotropic
surface tension, this condition has to be modified; the ca
lary lengthd becomes a function of orientation, and the su
face tension is replaced by the interface stiffness

FIG. 9. Surface tension as a function of orientation f
T50.86Tc . Below: difference of the upper curve and the pure c
sine given by Eq.~40!: the next harmonic, cos~8u!, appears.
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d~u!5
a2xeq

~Dp!2
„s~u!1s9~u!…, ~43!

wheres9 denotes the second derivative ofs with respect to
u. Using expression~40!, we find that

d~u!5
a2xeqs0

~Dp!2
~1215aScos4u!. ~44!

The capillary length stays roughly proportional to the cor
lation length, and diverges at the critical temperature. T
anisotropy is a function of temperature only, and vanishe
the transition, where all details of the lattice structure
wiped out. In real systems, the capillary length is usually
the order of nanometers, that is, at least one order of ma
tude above the interatomic spacing. In our model we re
this order of magnitude only forkTc2kT,1022. In the
simulations presented in Sec. III the capillary length
smaller than the lattice constant. This is not in contradict
with the continuum approach, because the physical quan
is the product (dK), which gives the concentration deviatio
at the interface. As long as the tip radius given by Eq.~25!
stays reasonably larger than the lattice constant, this
proach should be valid.

We see that we cannot vary capillary length and anis
ropy independently. To do this, we would have to introdu
another free parameter~besides the temperature!. The natural
choice is to introduce more interactions. For example,
introducing next-nearest-neighbor interaction and play
with the ratio between the two interaction strengths, we s
ceeded in screening the fourfold component of the ani
ropy completely, arriving at eightfold structures~Fig. 10!.
Increasing the range of the interaction, we thus can alte
tively approach isotropic growth or achieve a desired anis
ropy.

We can compare our result to the standard boundary c
dition used in two dimensions. We see that the favo
growth directions, which are marked by a minimum of t
capillary length, are indeed the diagonals. Hence we h

FIG. 10. Same as Fig. 2, but a next-nearest-neighbor interac
has been introduced. ForT50.1Tc , p`50.02, and«1/«252, we
obtain eightfold structures.
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shown that the Gibbs-Thomson effect can explain the form
tion of stable dendrite tips in the lattice diagonals. We n
have to analyze the other possible effects.

VI. ANISOTROPY OF THE DIFFUSION COEFFICIENT

In the region surrounding the growing aggregate, the c
centration gradients are small. The equation of motion
duces to a diffusion equation. However, the currents a
concentrations are defined on the lattice, and expression~13!
for the diffusion coefficient involves discrete Laplacians v
the chemical potentials. Hence the diffusion coefficient v
ies as a function of the orientation of the concentration g
dient. Starting out from an initial condition with rotationa
symmetry as in Fig. 3, this leads to a variation of the curre
with the orientation which could cause the formation of ti
where the diffusion is enhanced. We will now analyze th
anisotropy.

Imagine a uniform concentration gradie
“p5(¹px ,¹py) in a certain region of the lattice. We wil
denote its direction byn5(nx ,ny). Then the concentration
differences between neighboring sites area¹px in the x di-
rection, anda¹py in the y direction. We choose a referenc
point of concentrationp0 and develop Eq.~13! to first order
in “p. The result is

Dx5Dhom~p0!„11aD~p0 ,kT!a¹px… ~45!

for a link in thex direction, and the analog for they direc-
tion. Dhom is the homogeneous diffusion coefficient defin
in Eq. ~23!, andaD is given by

aD~p0 ,kT!5
12kTx8~p0!

2kTx~p0!
2

1

12p0
, ~46!

x8 denoting the derivative ofx with respect top. The micro-
scopic currents arej x52aDx¹px and j y52aDy¹py . The
macroscopic current crossing a surface normal to the gr
ent is then given by the sum over the microscopic current
all the links that cross the surface. A surface of lengthL
(L@a) normal ton cuts approximatelyLnx links in the x
direction, andLny links in the y direction. The resulting
macroscopic current~per unit surface! is

u j u5au“pu~Dxnx
21Dyny

2!. ~47!

Inserting Eq.~45! gives~using the fact thatn is a unit vector!

u j u5au“puDhom@11au“puaD~ unx
3u1uny

3u!#. ~48!

We see that the second order introduces anisotropy. The
in n3 has a maximum value 1 on the lattice directions, an
minimal value 1/& on the diagonals. This anisotropy is pro
portional to the concentration gradient and to the funct
aD . Typical values ofau¹pu in our simulations are around
1024. For high temperature,aD is negative and of orde
unity, which makes this anisotropy two orders of magnitu
less than the anisotropy of the surface tension. For lo
temperatures,aD begins to grow and becomes positive:
the concentration ranges we used, it is of order 10 forkT
50.5, and of order 100 forkT50.1. Still, the resulting an-
isotropy is small compared to the static anisotropy. Mo
over, becauseaD is positive, the diffusion coefficient is

on
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55 55DENDRITIC GROWTH IN A MEAN-FIELD LATTICE . . .
slightly higher in the~10! direction. This means that diffu
sion is enhanced along the lattice directions, which sho
lead to tips in the lattice directions instead of the obser
tips. We conclude that the anisotropy of the diffusion co
ficient is not the cause of the observed tip formation.

VII. DYNAMICS OF PLANAR INTERFACES

The first step toward understanding the dynamical beh
ior of the full model has to be a study of planar interfac
The curvature is zero, which allows us to isolate kinetic
fects. In addition, when the interface is oriented normal
the ~10!- and ~11!-symmetry directions, we can reduce o
array of equations~6! to a quasi-one-dimensional set
equations, which are much easier to handle, analytically
numerically. Then each concentrationpk represents a whole
layer of lattice sites. For the~10! direction the reduced ver
sion of ~6! reads

dpk
dt

5w0(
j

$pk~12pj !exp@k~pk2112pk1pk11!#

2pj~12pk!exp@k~pj2112pj1pj11!#%. ~49a!

whereas for the~11! direction it is

dpk
dt

5w0(
j

$2pk~12pj !exp@2k~pk211pk11!#

22pj~12pk!exp@2k~pj211pj11!#%. ~49b!

The factors 2 in the second formula come from the latt
geometry. In both cases,j takes the valuesk21 andk11 in
the sum. Attention has to be paid to the fact that the po
are not at equal spacing: in direction~10!, the distance of two
layers isa, whereas in direction~11! it is a/&.

These systems of equations can be integrated much m
rapidly, and we have carried out extensive numerical stud
We are interested in the departure of the interface shape
the equilibrium shape. This departure depends on the in
face velocityv, which in turn is a function of the thermody
namic driving force. To have a time-independent soluti
we thus must seek the stationary states; that is, the situa
in which v is constant. For a conserved one-dimensio
system a traveling front with constant velocity and vanish
concentration gradients at infinity is impossible, because
would violate mass conservation. To have an advanc
front, we have to feed a current into the system. Afte
transient, the profile settles down to a stationary state; tha
the profilep(x,t) should become a function of the reduc
variableu5x2vt only. We want to determine the form o
this stationary profile as a function of the velocityv, and the
relation between current and velocity.

A complete treatment of this issue is beyond the scope
this paper, and will be published elsewhere@26#. We can
completely solve a continuum approximation following ide
similar to those of Langer and Sekerka@27#, who worked on
the continuous Cahn-Hilliard equation. The discrete probl
is much more intricate. In fact, given that we have no co
ld
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tinuous translational symmetry, a true stationary state m
even not exist at all. Indeed, monitoring the dynamics~49!
closely, we see that the interface shape and the growth
locity oscillate slightly while the interface advances, with
period that corresponds exactly to one lattice step. Thi
correlated to variations of the surface tension with the int
face position discussed in Sec. IV: the interface slows do
when it must ‘‘climb’’ a hill of surface tension, and accele
ates when it ‘‘slides down’’ in the next valley. To investiga
the dynamical anisotropy of our system, we have to treat
discrete problem. We will proceed by averaging over o
period, which is certainly a valid procedure at high tempe
tures as discussed above.

We integrated the sets of equations~49! for various sys-
tem sizesL, temperatures, and currents. The initial con
tions were the corresponding equilibrium shapes centere
a positionn0. As boundary conditions, we imposed zero cu
rent atn50 and a currentj 0 at n5L21. To calculate the
current from site 0 to site 1, we chose ‘‘mirror’’ boundar
conditions,p215p0 . To have a stationary state, we used
moving frame: once the interface moved forward by one
tice step, the whole configuration was shifted backward.
found that after a certain transient, the system settled do
to a configuration independent of initial conditions. The pr
files obtained in this way have the shape depicted in Fig.
Behind the moving front, a plateau at concentrationp`

a de-
velops.p`

a is a function of the velocity and always smalle
than the equilibrium concentration of the dense phasepeq

a .
The interfacial region preserves the overall shape of the e
librium profile when the velocity is not too large. Far in fron
of the interface~at several times the interface thicknessj!,
we find a ramp profile where the concentration gradien
nearly constant. The exact solution of the diffusion equat
~with D constant! in a moving frame is an exponential; how
ever, in our case the diffusion lengthl5D/v is of order 105,
so that we can safely approximate the profile by a strai
line. We observe that its interceptp0

b at the interface position
n0 is also a function ofv, and always larger than the equ
librium concentration of the dilute phase,peq

b . For small ve-
locities and high temperatures,p`

a and p0
b are linear func-

FIG. 11. Stationary interface shape forT50.86Tc andv51023,
obtained from the continuum treatment to be published@26#. For
comparison, the equilibrium profile is displayed as a broken lin
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56 55MATHIS PLAPP AND JEAN-FRANÇOIS GOUYET
tions of the velocity. At low temperatures,p `
a(v) develops

important nonlinearities due to the slow dynamics in thea
phase.

How do these modifications influence the macrosco
boundary conditions at the interface? The concentra
given by condition~1! is in fact a concentration in the dilut
phase immediately ahead of the interface. In our model,
is precisely the valuep0

b defined above. Hence whenp0
b is

linear in v, this defines the kinetic coefficientb0,

p0
b2peq

b 5vDpb0 . ~50!

Plotting the intercept against the velocity, we can determ
b0.

The concentration deviation in the growing phase
known as ‘‘solute trapping.’’ It is so called because a cert
species of atoms~in our model: the holes! are trapped in the
advancing front, even if this increases their chemical pot
tial. This does not influence the boundary condition~1!, but
it modifies the relation between incoming flux and veloci
To order zero, this relation is given by

u j u5vDp, ~51!

wherej is the current arriving at the interface. However, th
supposes that the current has to ‘‘fill in’’ the complete m
cibility gap. At nonzero velocity, we have to replaceDp by
p `

a2p 0
b. In the linear region, we writep `

a2peq
a 5vdp`

a . The
first correction to Eq.~51! thus reads

u j u5v~p`
a2p0

b!>vDp1v2~dp`
a2b0!. ~52!

We see that the two coefficientsdp`
a andb0 are sufficient to

determine the coupling of the interface to the diffusion fie
and the flux-velocity relation~52! in the high-temperature
region. We have determineddp`

a and b0 numerically for
several temperatures in the two main symmetry directio
The former is negative of order210 and has a slight aniso
ropy, which is about 1% forkT50.8, and decays with grow
ing temperature. The latter is of order unity and develop
stronger anisotropy~about 30%! for temperatures betwee
0.5Tc and 0.8Tc . The higher value is in the~10! direction,
slowing down growth in this direction. However, the impo
tant differencedp`

a2b0 shows only a slight anisotropy be
cause the anisotropies of the two coefficients compen
each other. More details will be published soon@26#.

We are now ready to make a comparison between kin
and curvature effects. We have not yet made simulation
two dimensions at sufficiently high temperatures to reach
temperature range in which the analytic developments
valid with certainty. However, our numerical results for on
dimensional systems indicate that there are no qualita
changes when we go to lower temperatures. We will the
fore compare with the data from our simulations. All valu
are in units of the lattice constanta, and the overall time
scalew0

21. For the simulation presented in Fig. 3~kT50.5!,
typical curvatures are of order 0.1, typical velocities of ord
1025. The capillary length is about 0.1, and the anisotropy
the surface tension is 2%, which gives an anisotropy of
c
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capillary length of 30%. Hence the order of magnitude
curvature effects is 1023. On the other hand, the coefficien
b0 is of order unity, with an anisotropy of about 30%, whic
for a velocity of 1025 gives a kinetic anisotropy of the orde
1025. Hence we conclude that kinetic effects are negligib
before the anisotropy of the surface tension. This could
different for higher temperatures, where the radii of the c
vature grow, and the anisotropy of the surface tension v
ishes rapidly. In this case it should be difficult to dete
whether static or kinetic anisotropy is the dominating effe
for they both favor the growth in the lattice diagonals.

VIII. SUMMARY

We showed that the macroscopic and mesoscopic~phase-
field! equations of dendritic growth can be obtained from
microscopic master equation in a mean-field approximati
It is interesting to note that the complex pattern formati
process can be obtained effectively from simple local rul
We calculated the orientation-dependent surface tension,
gave numerical results for the kinetic coefficient, findin
good agreement with the standard macroscopic phenom
logical theory. This approach allowed us to derive all ma
roscopic coefficients in terms of the microscopic intera
tions, which might lead to a deeper understanding of
connections between them. We believe that our model
faithful representation of dendritic growth for small supe
saturations, and when the hierarchy of length sca
a'j!R!L is satisfied~L is the linear system size, andR a
typical radius of curvature!.

The anisotropy of the surface tension is related to sh
variations of the equilibrium interface: we have to inclu
shape corrections depending on orientation. The kinetic
efficient can be derived from the shape of stationary int
faces at small velocities. Thus we see that interface struc
and dynamics play key roles in the passage from microsco
to macroscopic descriptions.

The static anisotropy is a consequence of the lattice st
ture. In some sense, this is a trivial statement because
well known that discretization of continuous equations lea
to anisotropic behavior. The advantages of the present
proach are that we can precisely quantify this effect, and
we have an underlying microscopic process which sugg
that our lattice is the real crystal lattice, which evidently
also the source of anisotropy in the ‘‘real world.’’

Analyzing the possible origins of the anisotropy, we fin
that in the temperature domain of our simulations the nee
tips are stabilized by the anisotropy of the surface tens
Thus the Gibbs-Thomson boundary condition is crucial
the formation of dendrites. This is corroborated by a co
parison of our results to those of Ref.@16#: the authors used
a phase-field model with a conserved phase field, couple
a diffusion field. They integrated on a square lattice, wh
gives an equation of motion for the phase field very simi
to ours, and yet they observed isotropic growth and form
tion of seaweed structures. The reason for this is that
coupling term between the phase field and the diffusion fi
destroyed the lattice anisotropy in their case. Therefore
see that the modification of the coupling term in phase-fi
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models may significantly alter the interfacial boundary co
ditions and the observed structures.

In summary, our model provides a method to relate m
roscopic growth processes to microscopic dynamics. It
lows us to investigate the interplay between microscopic
teractions and macroscopic quantities intervening in
phenomenological growth equations. A serious limitation
to now has been the use of the mean-field approxima
which suppresses noise. If we can devise a more car
scheme to pass from the stochastic process to the EOM
ing renormalization group ideas to obtain scale-invari
equations, our approach could allow us to relate sidebran
ing to the equilibrium fluctuations in the bulk. This cou
r,

.

-

-
l-
-
e
p
n
ful
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h-

further clarify the relations between DLA and dendrit
growth.
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